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Abstract—As one of the most effective technologies for network
reconstruction, compressive sensing can recover signals from
a small amount of observed data through sparse search or
greedy algorithms in the assumption that the unknown sig-
nal is sufficiently sparse on a specific basis. However, there
often occurs loss of precision even failure in the process of
reconstruction without enough prior information. Therefore, the
purpose of this article is to solve the problem of low reconstruc-
tion accuracy by mining implicit structural information in the
network. Specifically, we propose a novel and efficient algorithm
(MCM_TRA) for reconstructing the structure of the K-forked
tree network. Based on evolutionary game dynamics, the modi-
fied clustering method (MCM) classifies all nodes into two sets,
then a two-stage reconstruction algorithm (TRA) is illustrated to
recover the node signals in different sets. The experimental results
demonstrate that the MCM_TRA enhances the reconstruction
accuracy prominently than previous algorithms. Moreover, exten-
sive sensitivity analysis shows that the reconstruction effect can
be promoted for a broad range of parameters, which further
indicates the superiority of the proposed method.

Index Terms—Compressive sensing, evolutionary game,
network reconstruction, tree network.

I. INTRODUCTION

COMPLEX networks have long been a question of great
interest in a wide range of fields [1]. Since considerable

complex systems [2] can be modeled into complex networks
for analysis, the topology [3], evolution [4], propagation [5],
and control [6] of the network have attracted increasing atten-
tion. Among them, the topology of a network is a crucial
property, as the structure will affect its function. For instance,
the structure of the power network [7] influences power trans-
mission stability, also the structure of the traffic network [8]
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has an impact on transportation efficiency. Nonetheless, the
existing body of research suggests that the structure of com-
plex networks, such as biological networks, sensor networks,
and social networks [9]–[11], is hard to observe in practical
applications. Thus, reconstructing the network structure is a
significant but challenging task [12]–[14]. Here, we mention
a kind of network with apparent structural information, called
K-forked tree network, where the nodes within each layer are
connected with K subtrees. The structure of the K-forked tree
network is widely used to form the information flow in biolog-
ical networks [15], summarize and visualize the relationship
between samples [16], assess the operation security of power
system [17], etc. Such a significant network is worth exploring
and reconstructing; however, there has been little considera-
tion about the combination of latent structural information and
reconstruction methods up to now.

Recent years have witnessed great progress in the explo-
ration of network reconstruction, where the reconstruction
methods are mainly divided into two categories: 1) one is the
model-based method [18] and 2) the other is the data-based
method [19], where the data-based reconstruction method
is challenging for several reasons. On the one hand, the
network reconstruction problem is essentially an underdeter-
mined problem as the observed data are frequently less [20].
On the other hand, a large number of nodes in a complex
network may be connected by some hidden contents, which is
difficult to observe from the measurement data [21].

With the arrival of the big data era, compressive sens-
ing, a data-based method has been of wide concern and
achieved great results [22], [23]. It is generally assumed that
the prior information of the unknown signal is sparse enough
on a specific basis [24]. Nevertheless, the potential structure
information in the network is not well utilized, resulting in
poor reconstruction accuracy. In fact, making full use of the
prior information of the network structure to reconstruct is
effective. Baraniuk et al. [18] proposed a model-based com-
pressive sensing framework, adding structural information to
the recovery algorithm. Khajehnejad et al. [25] established
the weighted l1 minimization for sparse recovery with prior
information, which successfully enhanced the reconstruction
accuracy. Yu et al. [26] reconstructed sparse signals using a
hierarchical Bayesian model based on the sparse prior and clus-
ter prior. Recently, Huang et al. [27] excavated the symmetry
characteristics of the network structure and integrated this con-
straint into the problem of network structure reconstruction,
which notably improved the reconstruction accuracy.
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Inspired by the aforementioned research, we propose a novel
method (MCM_TRA) to reconstruct the K-forked tree network
by incorporating the implicit structural information. Our main
contributions are three-fold. First, given the prior information
of the degree characteristics in a K-forked tree network, the
modified clustering method (MCM) is proposed to classify all
nodes. Second, a two-stage reconstruction algorithm (TRA) is
employed to reconstruct the sparse signal vectors correspond-
ing to the nodes in different sets, and sparse signal vectors
are recombined and transformed into the reconstructed matrix.
Last but not least, the sensitivity analysis of MCM_TRA is
conducted to reveal the reconstruction effect can be promoted
for a broad range of parameters, further indicating the supe-
riority of our method. Compared with existing compressive
sensing algorithms for reconstructing tree networks, such as
orthogonal matching pursuit (OMP), compressive sampling
matching pursuit (CoSaMP), weighted OMP (WOMP), and
modified clustered OMP (MCOMP) [28]–[31], our proposed
method substantially improves the reconstruction performance,
and inspires the idea of mining potential structure information
in similar networks.

The remainder of this article is organized as follows.
In Section II, we review the compressive sensing theory
and formulate the problem of network structure identifica-
tion based on evolutionary game data. In Section III, our
method (MCM_TRA) is proposed to reconstruct K-forked tree
networks. Section IV provides corresponding numerical sim-
ulation experiments for MCM_TRA. Finally, conclusions and
future research topics are described in Section V.

II. PRELIMINARIES

A. Compressive Sensing Theory

Compressive sensing theory has proved that it is possible to
obtain the original signal information from the measured data
with the sampling rate much lower than that of Nyquist in the
framework of sparse signal recovery. To be concrete, one can
recover the raw signal x = [x1, x2, . . . , xN]T ∈ RN , which is
a κ-sparse vector (i.e., the l0-norm of the vector x satisfies
‖x‖0 ≤ κ and κ � N) with a low-dimensional measurement
vector y = [y1, y2, . . . , yM]T ∈ RM by the equation as follows:

y = �x (1)

where � ∈ RM×N is a measurement matrix and M � N.
However, even though the vector y and matrix � are known,
it is still difficult to reconstruct the high-dimensional signal
by solving (1) since it is an underdetermined equation with
infinite solutions for M � N. Therefore, l0-norm minimization
is employed to resolve the sparse signal recovery problem as
follows:

min ‖x‖0
s.t. y = �x. (2)

In fact, the l0-norm minimization problem aims to calculate
the number of nonzero elements in the vector. As the search
space is excessively enormous, the method is an NP-hard
problem. Hence, the restricted isometry property (RIP) [32]

is introduced

(1− δκ)‖x‖22 ≤ ‖�x‖22 ≤ (1+ δκ)‖x‖22 (3)

where δκ(0 ≤ δκ ≤ 1) is a constant related to sparsity κ .
Equation (3) ensures the matrix � satisfies the κ-RIP condi-
tion, which guarantees all submatrixes are nearly equidistant.
Hence, the l0-norm minimization can be transformed into the
l1-norm minimization with convex relaxation as follows:

min ‖x‖1
s.t. y = �x. (4)

So far, there have been numerous algorithms for the solution
of (4), among which the most commonly used is the l1-norm
minimization algorithm for sparse matrix equation [33], such
as the matching pursuit (MP) [34], and the following extended
OMP, CoSaMP, StOMP [35], etc.

B. Compressive Sensing Method for Network Reconstruction
Based on Evolutionary Game Data

The evolutionary game model is a typical model reflecting
the interaction of agents in complex systems. In a network
with known structure, agents tend to adopt different strate-
gies to play games for gaining the maximum benefit under
certain interaction modes. These agent-to-agent interactions,
which can be used to generate time-series data, are dominated
by the dynamics of evolutionary games.

In the networked game dynamics, each node is regarded as
an agent, which will play a pair game with each neighbor in
the network structure. Specifically, an agent can select one of
two strategies: 1) cooperation (C) or 2) defection (D), which
can be expressed in mathematical form as s(C) = [1, 0]T and
s(D) = [0, 1]T . The payoff acquired by an agent in the process
of game is determined by the payoff matrix P, which can be
defined as follows:

P =
[

R S
T P

]
. (5)

Here, R represents the reward for mutual cooperation, recorded
as (C, C). Conversely, P denotes the punishment for mutual
defection, recorded as (D, D). If one chooses to cooperate and
the other chooses to betray, recorded as (C, D) or (D, C), the
cooperator will obtain the sucker’s payoff S, while the defector
will gain the temptation to defect T .

Prisoner’s dilemma game (PDG) [36] is a representative
example of game theory, explaining the cooperation and
competition among individuals in society. We adopt it as
our game model, which satisfies the following conditions:
T > R > P > S, and 2R > T + S. Thus, the realistic payoff
matrix is given by

PPDG =
[

1 −0.04
b 0.15

]
(6)

where 1 < b < 2, tallying with the condition, we hold b = 1.2
in this article.

Next, we generate the relevant data of the evolutionary
game. With regard to agent i, si(t) represents its strategy at
time step t. The payoff of agent i is sT

i (t)Psj(t), which is
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obtained from playing with agent j. At time step t, all agents
play games with their neighbors in a specific network, the
payoff of each agent i reads

ui(t) =
∑
j∈�i

sT
i (t)Psj(t) (7)

in which �i represents all neighbors connected to agent i. After
each round of the game, the agent updates its strategy in the
light of the profits of its neighbors. The difference in payoffs
between agent i and j can be described by: �u(t) = ui(t) −
uj(t). If �u(t) ≥ 0, agent i will maintain its strategy in the
next time step; otherwise, agent i will adopt the strategy of
agent j at time step (t + 1) based on the probability calculated
by the Fermi rule [37]

p
(
si(t + 1)← sj(t)

) = |�u(t)|
〈k〉b (8)

where 〈k〉 is the maximum degree between agent i and j, and b
denotes the largest payoff difference, holding b = T−S in the
prisoner’s dilemma. After the above process, the time-series
data of payoff and strategy can be obtained for the network
reconstruction process.

Assume the number of agents in the network is N, and the
adjacency matrix X ∈ RN×N corresponding to the network
structure is given by

X =

⎡
⎢⎢⎢⎣

x11 x21 · · · xN1
x12 x22 · · · xN2
...

...
. . .

...

x1N x2N · · · xNN

⎤
⎥⎥⎥⎦. (9)

If agents i and j are interconnected, xij = xji = 1; otherwise,
xij = xji = 0. The relation between payoff and strategy of
agent i at time step t can be deduced as follows:

Ui(t) =
N∑

j=1

xijFij(t) (10)

where Fij(t) = sT
i (t)Psj(t) is the visual payoff, which depends

on the strategies of agent i and j at time step t, transforming
into a valid term in case xij = 1. Next, we obtain the payoff
vector yi = [Ui(t1), Ui(t2), . . . , Ui(tM)]T ∈ RM by using the
measurement data from the time step t1 to tM . For agent i,
the ith column of X contains its structure information, written
as xi = [xi1, xi2, . . . , xiN]T ∈ RN . Here, the strategy matrix of
agent i is defined as Ai ∈ RM×N , then the following equation
can be obtained:

yi = Aixi (11)

where

yi = [Ui(t1), Ui(t2), . . . , Ui(tM)]T (12)

Ai =

⎡
⎢⎢⎢⎣

Fi1(t1) Fi2(t1) · · · FiN(t1)
Fi1(t2) Fi2(t2) · · · FiN(t2)

...
...

. . .
...

Fi1(tM) Fi2(tM) · · · FiN(tM)

⎤
⎥⎥⎥⎦ (13)

xi = [xi1, xi2, . . . , xiN]T . (14)

Since the network consists of N nodes, the equations of all
nodes can be stacked and combined as follows:⎡

⎢⎢⎢⎣
y1
y2
...

yN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1 O · · · O
O A2 · · · O
...

...
. . .

...

O O · · · AN

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

x1
x2
...

xN

⎤
⎥⎥⎥⎦ (15)

where O stands for zero matrix. For simplicity, (15) is rewritten
in the form as

y = Ax (16)

where

y = [y1, y2, . . . , yN]T (17)

A =

⎡
⎢⎢⎢⎣

A1 O · · · O
O A2 · · · O
...

...
. . .

...

O O · · · AN

⎤
⎥⎥⎥⎦ (18)

x = [x1, x2, . . . , xN]T = vec(X). (19)

In view of the derivation and discussion of the aforemen-
tioned equations, the problem of reconstructing X by columns
has been successfully transformed into recovering vector x
directly. Since the vector x = vec(X) is sparse for most of
the networks, the compressive sensing method based on evo-
lutionary game data becomes a general framework for network
reconstruction

x̂ = arg min ‖x‖1
s.t. y = Ax (20)

where x̂ is the reconstructed vector of x. Finally, we trans-
formed the vector x̂ into the matrix X̂ by using the matrixing
method, which represents the reconstructed network structure.
The matrixing method can be expressed by

X̂ = unvecN,N
(
x̂
) =

⎡
⎢⎢⎢⎣

x̂11 x̂21 · · · x̂N1
x̂12 x̂22 · · · x̂N2
...

...
. . .

...

x̂1N x̂2N · · · x̂NN

⎤
⎥⎥⎥⎦. (21)

Under the general framework, network structure reconstruc-
tion is merely driven by the measurement data, corresponding
to the strategies and payoffs of agents at different times.
However, many networks possess specific structural charac-
teristics in reality. For instance, assume the network with 40
nodes, Fig. 1(a) and (b) shows the visual adjacency matrix
of two specific network structures, where the nonzero ele-
ments gather near the diagonal and pile up into blocks,
respectively. Traditional compressive sensing methods based
on evolutionary game data are incapable of utilizing the
structure information of these networks, resulting in poor
reconstruction accuracy. Therefore, it is significant to ade-
quately mine the potential structural characteristics and design
the reconstruction algorithm for these networks with a specific
structure.
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Fig. 1. Visual adjacency matrix of networks with specific structure.
(a) Adjacency matrix where nonzero elements gather near the diagonal.
(b) Adjacency matrix where nonzero elements are stacked into block. The
nonzero elements reflecting special structures are marked in blue, while others
are marked in black.

Fig. 2. Structure of K-forked tree network. The red, blue, and green circles
represent the root node, middle nodes, and leaf nodes, respectively.

III. PROPOSED APPROACH

A. Structure Characteristics of K-Forked Tree Network

Tree networks, generally connected as the open-loop struc-
ture, are common in reality. The development of tree networks
has spawned many research fields, such as the tree search
algorithm in data structure [38], the decision tree in machine
learning [39], the gene inference in biological sciences [40],
etc. The K-forked tree network is a typical tree network with
special structure, as shown in Fig. 2, each node of which is
provided with K child nodes. In order to number all nodes of
the K-forked tree network, assume that the depth of K-forked
tree is L, the sum of nodes can be calculated according to the
following formula:

Ns = KL − 1

K − 1
(22)

where K ≥ 2 and K is an integer. When numbering the nodes
in a K-forked tree network, the root node number is defined
as 1, increasing from top to bottom and left to right. The way
of numbering, widely applied in power system networks and
social networks, is regarded as a paradigm.

The structure of the K-forked tree network presents obvi-
ous structural characteristics and there are merely three degree
values for all nodes, in which root node, middle node, and leaf
node respectively, correspond to K, K + 1, and 1. The degree
value reveals latent structural features between the node and its
neighbors. From a mathematical perspective, the information
reflected by these features may appear in the adjacency matrix.

However, present reconstruction algorithms barely consider the
characteristics of degree as prior information.

In this case, the TRA based on the MCM (MCM_TRA) is
proposed to reconstruct K-forked tree networks and improve
the accuracy. Fig. 3 illustrates the overall diagram of the
K-forked tree network reconstruction method. The details of
this approach are described in the following section.

B. Modified Clustering Method

In the previous section, the latent structural information of
the K-forked tree network is mainly reflected in the degree
values. Hence, the MCM is introduced as a classifier to
distinguish the nodes with different degree values. Before
conducting the classification algorithm, feature selection is a
critical step.

Because the measurement data of the K-forked tree network
are included in payoff vector y, how to mine valid features
deserves in-depth consideration. For intuitive analysis, the
payoff vector y is converted to the matrix Y ∈ RM×N by

Y = unvecM,N(y) =
⎡
⎢⎣

U1(t1) · · · UN(t1)
...

. . .
...

U1(tM) · · · UN(tM)

⎤
⎥⎦ (23)

where the ith column of Y represents the measurement data
of node i from the time step t1 to tM .

Fig. 4 describes the analysis process of feature selection. As
shown in Fig. 4(a), the 5-forked tree network with 31 nodes
is taken as an example, where nodes 1–6 in the shaded area
represent big degree nodes and nodes 7–31 are small degree
nodes. On the one hand, a big degree node owns more oppor-
tunities to play games with its neighbors, generally resulting in
higher payoff. That is to say, the mean payoff of each node can
be regarded as a feature. Nevertheless, in some special cases,
the node is a cooperator while most of its neighbors are defec-
tors. It violates the widespread phenomenon that a node with
bigger degree gains more, which is illustrated in Fig. 4(b) that
nodes in the red box are potential misclassified nodes. On the
other hand, the standard deviation of each node’s payoff is
considered as another feature since the payoff of a big degree
node might significantly vary in different moments. However,
there exists a certain probability that the standard deviation
corresponds to a small degree node is large, as is shown in
Fig. 4(c), also increasing potential classification errors.

To complement the shortcomings of each feature, the mean
and standard deviation of payoff are considered together to
promote the accuracy of classification. Specifically, the mean
payoff of node i within the sampling time is given by

μi = 1

M

M∑
k=1

Ui(tk). (24)

Analogously, the standard deviation of payoff corresponding
to node i reads

σi =
√√√√ 1

M

M∑
k=1

[Ui(tk)− μi]2. (25)
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Fig. 3. Overall diagram of the K-forked tree network reconstruction method. For a K-forked tree network, the evolutionary game is used to drive the data to
obtain the payoff vector and strategy matrix. Next, the MCM is adopted to classify all nodes into Set1 and Set2. Then, the TRA is proposed to, respectively,
reconstruct the vectors of nodes in two sets, which are recombined into the reconstructed vector x̂. Finally, we transform the vector x̂ into the matrix X̂ to
realize the reconstruction of the K-forked tree network.

Fig. 4. Analysis process of feature selection. (a) Suppose a 5-forked tree
network with 31 nodes, nodes 1-6 in shaded area represent big degree nodes
and nodes 7-31 are small degree nodes. (b) Mean payoff of each node.
(c) Standard deviation of each node’s payoff. The red box marks potential
misclassified nodes in (b) and (c), respectively.

We map the above data to the interval [0, 1] using the nor-
malization method. Thus, the normalized mean vector and
standard deviation vector are, respectively, expressed by μ̃ =
[μ̃1, μ̃2, . . . , μ̃N]T and σ̃ = [σ̃1, σ̃2, . . . , σ̃N]T , which can be
used as the input of classification algorithm. In the output,
based on feature vectors, nodes are separated into two sets by
the classification algorithm. The index of big degree nodes in
Set1 is defined as �1 ⊂ {1, 2, . . . , N}, and the index of small
degree nodes in Set2 is �2 ⊂ {1, 2, . . . , N}\�2.

Next, selecting an appropriate classification algorithm is
critical since it directly determines whether nodes can be

TABLE I
COMPARISON OF CLUSTERING ALGORITHM

divided into the correct set. As one of the unsupervised learn-
ing methods, clustering is widely used in designing classifiers.
Here, K-means (partition based), BIRCH (hierarchy based),
DBSCAN (density based), and GMM (model based) algo-
rithms [41]–[44] are applied to classify these nodes. We use
several indicators to evaluate the classification effect: the error
rate represents the probability of misclassification, higher Rand
index (external index) [45] corresponds to higher similarity
between predicted and true values, while lower Davies–
Bouldin index (internal index) [46] indicates the algorithm
has higher intracluster cohesion. Moreover, if the average
silhouette [47] is closer to 1, it means the clustering configu-
ration is more appropriate. Based on the above indicators, the
performance comparison of clustering algorithms is shown in
Table I. It is obvious the error rates of K-means and DBSCAN
are approximate and lower than other algorithms. However,
the Rand index, Davies–Bouldin index, and average silhou-
ette of k-means are better than DBSCAN. Therefore, K-means
can be regarded as a more suitable classification algorithm for
K-forked tree networks.

Although K-means performs better than other clustering
algorithms in the above analysis, there still exists a 5% error
rate in classification results. Thus, an idea appears that the
results can be modified by excavating latent information in
the payoff matrix. Because a small degree node is merely con-
nected with its parent node, the payoff in each round is limited
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to four values corresponding to the game matrix. Assume
that node i ∈ �2, for ∀tk, if Ui(tk) /∈ {R, T, S, P} exists,
node i can be regarded as a big degree node and divided
into Set1. In contrast, a big degree node plays game with
multiple nodes, the cases of its payoff will exceed this range.
Thus, with regard to node i ∈ �1, if Ui(tk) ∈ {R, T, S, P} is
satisfied for all tk, we transfer it into set2. After this modifi-
cation process, the results are quite consistent with the actual
situation.

The modification of clustering results leads to the change
of elements in the index sets. Hence, �1 and �2, which
include wrong classification indexes, are replaced by the
correct index sets K1 and K2. Assume the amount of ele-
ments are |K1| = N1 and |K2| = N2 = N − N1. Then,
according to the index sets K1 and K2, the payoff vector
y is reorganized by yK1

= [yK1(1), yK1(2), . . . , yK1(N1)
]T and

yK2
= [yK2(1), yK2(2), . . . , yK2(N2)

]T . Likewise, the strategy
matrix A is reorganized into the following form:

AK1 =

⎡
⎢⎢⎢⎣

AK1(1) O · · · O
O AK1(2) · · · O
...

...
. . .

...

O O · · · AK1(N1)

⎤
⎥⎥⎥⎦ (26)

and

AK2 =

⎡
⎢⎢⎢⎣

AK2(1) O · · · O
O AK2(2) · · · O
...

...
. . .

...

O O · · · AK2(N2)

⎤
⎥⎥⎥⎦. (27)

After adjusting the sequence of nodes according to the
classification results, (15) is rewritten by[

yK1

yK2

]
=

[
AK1 O
O AK2

][
xK1

xK2

]
(28)

where the upper part and the lower part, respectively, corre-
spond to Set1 and Set2. Consequently, an idea occurs that node
signals in different sets can be reconstructed by

x̂Kp = arg min
∥∥xKp

∥∥
1

s.t. yKp
= AKp xKp (29)

where p = 1, 2. In this case, the vectors x̂K1 and x̂K2 can be
recombined into the reconstructed vector x̂ according to the
index sets K1 and K2.

In the follow-up phase of the method, estimating the degree
values of nodes in different sets is significant, because it may
be used in the reconstruction algorithm. On the one hand, the
degree value of a node in Set2 can be easily inferred as a
small degree node is only linked to one neighbor. It means
the degree value of each node in Set2 is 〈k〉2 = 1. On the
other hand, the situation is complicated for nodes in Set1. For
simplicity, the degree value of each node in Set1 is uniformly
expressed by 〈k〉1 = K + 1, including the root node. Next, to
estimate the specific degree value 〈k〉1, an adaptive method is
illustrated as follows.

For a node with multiple neighbors, the maximum payoff
corresponds to an ideal case where it is a defector and all
neighbors are cooperators. In this case, the ratio of Tmax =

Fig. 5. Estimated degree 〈k〉1 as a function of width K on different calibration
coefficients α. The shape points and error bands represent the mean and SD
based on 100 trials.

max{yK1
} to T accurately represents the number of neighbors,

which is the definition of degree value. Thus, the degree value
of each node in Set1 can be expressed by

〈̃k〉1 = Tmax

T
. (30)

However, the probability of this ideal situation is minor when
K is large. Normally, the maximum payoff Tmax is obtained
from the circumstances where the node is a defector and
most of its neighbors are cooperators, rather than all of them.
Consequently, the degree 〈̃k〉1 calculated by (30) is lower than
〈k〉1 in actuality.

To improve the accuracy of estimated degree value, some
laws are revealed by comparing it with the real situation. The
degree 〈̃k〉1 is calibrated by the following formula:

〈k〉1 =
{⌈〈̃k〉1⌉, 2 < 〈̃k〉1 ≤ 3[

α〈̃k〉1 + 0.5
]
, 〈̃k〉1 > 3

(31)

where α is a calibration coefficient. In Fig. 5, we explore the
estimated degree 〈k〉1 as a function of width K to find an appro-
priate calibration coefficient α, the points on baseline denote
correct degree values. Obviously, the curve corresponding to
α = 1.2 is quite consistent with the baseline. Thus, we hold
it in this article to estimate 〈k〉1 more accurate.

C. Two-Stage Reconstruction Algorithm

1) Stage 1 of TRA: In Set1, each big degree node is
connected to its unique parent node in the upper layer and
consecutive K child nodes in the lower layer. Naturally, the
sequence numbers of neighbors of each big degree node can
be deduced as the prior information. Suppose the cth element
in K1 corresponds to node i in Set1, which means i = K1(c).
The sequence numbers of its neighbors are given by

iq =
{
(i+ K − 2)/K, q = 1
K(i− 1)+ q, q = 2, . . . , K + 1.

(32)

Here, q = 1 and q = 2, . . . , K+1, respectively, correspond to
its unique parent node and K child nodes.

The sequence numbers of neighbors are exactly the posi-
tions of nonzero elements in the adjacency matrix X. Hence,
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Algorithm 1 Stage 1 of TRA
Input:

The strategy matrix AK1 and the payoff vector yK1

The number of iterations 〈k〉1N1
Output:

The reconstructed vector x̂K1

1: Initialize: r0 = yK1 , x̂0
K1
= 0, SUP0 = ∅

2: for i← 1, · · · , 〈k〉1N1 do
3: Step 1: Get the reweighted matrix: WK1

4: Step 2: Match:
5: Hi = AT

K1
ri−1

6: Step 3: Identify support indicator:
7: supi =

{
arg maxj

∣∣∣Hi(j)× wj
K1

∣∣∣}
8: Step 4: Update the support:
9: SUPi = SUPi−1 + supi

10: Step 5: Update signal estimate:
11: x̂i

K1
= arg minz:supp(z)⊆SUPi

∥∥yK1 − AK1 z
∥∥

2
12: ri = yK1 − AK1 x̂i

K1
13: end for
14: Return: x̂K1 ← x̂i

K1

for the purpose of making these nonzero elements more dis-
tinct identified, the weight constraint is considered to be
added in prior knowledge. Here, reweighted OMP (RwOMP)
algorithm inspired by [48] is proposed to reconstruct the
signal vector in Set1, which may boost the reconstruction
performance by putting the weight into the identify support
indicator in step 2 of Algorithm 1. The criterion of selecting
optimal term is related to the weight values, resulting in the
positions of elements with large weight values are easier to be
picked. Considering the initialization, for node i, the weights
assigned to the locations of its neighbors can be expressed by

w
iq
K1(c)
= ŵ (33)

where q = 1, 2, . . . , K + 1 and ŵ > 1, while the weights of
other positions are assigned as 1. Thus, the reweighted matrix
of node i is organized by

WK1(c) =

⎡
⎢⎢⎢⎢⎣

w1
K1(c)

0 · · · 0
0 w2

K1(c)
· · · 0

...
...

. . .
...

0 0 · · · wN
K1(c)

⎤
⎥⎥⎥⎥⎦. (34)

Similarly, for other nodes in Set1, the reweighted matrices
can be obtained in the same way. Consequently, the reweighted
matrix of each node in Set1 is stacked, and we obtain the
reweighted matrix WK1 corresponds to all nodes in Set1

WK1 =

⎡
⎢⎢⎢⎣

WK1(1) O · · · O
O WK1(2) · · · O
...

...
. . .

...

O O · · · WK1(N1)

⎤
⎥⎥⎥⎦. (35)

According to the above analysis, the latent sequence num-
bers of neighbors are incorporated into the framework of
RwOMP as the prior information. Thus, the detailed steps

Algorithm 2 Stage 2 of TRA
Input:

The strategy matrix AK2 and the payoff vector yK2

The number of iterations N2
Output:

The reconstructed vector x̂K2

1: Initialize: r0 = yK2 , x̂0
K2
= 0, SUP0 = ∅

2: for i← 1, · · · , N2 do
3: Step 1: Match:
4: Hi = AT

K2
ri−1

5: Step 2: Identify support indicator:
6: supi = {

arg maxj
∣∣Hi(j)

∣∣}
7: Step 3: Update the support:
8: SUPi = SUPi−1 + supi

9: Step 4: Update signal estimate:
10: x̂i

K2
= arg minz:supp(z)⊆SUPi

∥∥yK2 − AK2 z
∥∥

2
11: ri = yK2 − AK2 x̂i

K2
12: end for
13: Return: x̂K2 ← x̂i

K2

about the stage 1 of TRA are summarized in Algorithm 1.
The number of iterations is equal to the quantity of nonzero
elements in vector xK1 , which is approximately 〈k〉1N1. The
sparse approximation vector x̂K1 will be recovered by the
payoff vector yK1

and the strategy matrix AK1 .
2) Stage 2 of TRA: In Set2, a small degree node is merely

linked to its parent node. Thus, the true signal xK2 is a
N2-sparse vector in that |K2| = N2. As there exists no obvious
structure information, a recovery algorithm that is different
from RwOMP in stage 1 with less complexity in the pur-
suit of shorter operation time is considered to be chosen.
OMP is a greedy distribution least square method for fit-
ting the sparse model, which guarantees the residual vector
after each iteration is orthogonal to all previously selected
column vectors. We take advantage of OMP to ensure the
optimization of iteration and make the performance more
robust.

The number of nonzero elements in vector xK2 is exactly N2,
which is regarded as the number of iterations in OMP algo-
rithm. The stage 2 of TRA is generalized in Algorithm 2, from
which the sparse approximation vector x̂K2 will be restored in
a similar way.

In summary, the TRA is adopted to recover the sparse
approximation vectors x̂K1 and x̂K2 , which can be reorga-
nized into the reconstructed vector x̂. To further theoretically
explain the improvement of TRA on reconstruction effect, the
comparison between traditional algorithms (such as OMP or
CoSaMP) and the TRA is shown in Fig. 6. Traditional algo-
rithms reconstruct the network as a whole without using the
potential structural information effectively. There may be fair
a lot of errors between the reconstructed vector x̂ and the real
signal vector x. In contrast, the TRA makes full use of the
prior information of nodes classified by the MCM, adopting
appropriate methods to reconstruct the node signals. Therefore,
the TRA may perform better than traditional algorithms
in theory.
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Fig. 6. Theoretical comparison of reconstruction effect between traditional algorithms (such as OMP or CoSaMP) and the TRA. Assume that ten nodes in
the network: five nodes (1, 3, 4, 6, 10) with big degree, others (2, 5, 7, 8, 9) with small degree. The blue and green blocks correspond to big degree nodes
and small degree nodes, respectively. The vectors in red dashed boxes represent completely accurate reconstruction results.

TABLE II
CONFUSION MATRIX OF THE BINARY CLASSIFICATION PROBLEM

IV. NUMERICAL RESULTS

A. Reconstruction Evaluation

Before analyzing and evaluating the consistency between
the reconstructed network and the original network, we intro-
duce the notions of some evaluation indicators. For the binary
classification, the confusion matrix is generally used to gen-
erate the evaluation criteria, where corresponding elements
are included in Table II. Based on the confusion matrix, the
reconstruction effect is quantified by the area under receiver
operating characteristic curve (AUROC) and the area under
precision–recall curve (AUPR).

The ROC curve illustrates the performance of a binary clas-
sification by presenting the tradeoff between the true positive
rate (TPR) and the false positive rate (FPR). In our case, it
can be explained as: given a nonzero element in the recon-
structed matrix reflecting a latent edge in the network. If the
latent edge corresponds to a real edge in the original network,
the TPR increases. Otherwise, the FPR grows up. The score
is typically between 0.5 (random level) and 1 (perfect recon-
structed level). Therefore, the reconstruction performance can
be evaluated by the AUROC in a nonparametric way.

Analogously, the PR curve indicates the relationship
between the precision (P) and the recall (R), which has
been regarded as an alternative to ROC curve for assign-
ments with a large skew in the binary classification [49].
Here, the disparity between positive and negative samples can-
not be effectively guaranteed. Thus, the AUPR is employed
as another evaluation indicator to reveal the reconstruc-
tion effect with highly skewed samples. In the following
experiments, we mainly adopt AUROC and AUPR to trade-
off the performance of network reconstruction for different
algorithms.

B. Comparison of Different Reconstruction Algorithms

In this section, we focus on the performance of our
algorithm MCM_TRA for the task of recovering K-forked
tree networks. For comparison, we run two traditional algo-
rithms for standard κ-sparse: 1) OMP and 2) CoSaMP.
Moreover, two state-of-the-art reconstruction algorithms con-
sidering latent structural information, WOMP and MCOMP,
are compared with our results. We set the weight ŵ = 10 in
MCM_TRA, and default parameter settings are used in other
algorithms.

For a standard reconstruction procedure, the time-series data
in each round are recorded, consisting of the strategies and
payoffs of nodes in the evolutionary game. The data ratio can
be defined by RD = l/Ns, where l is given as the length of data
and Ns denotes the number of nodes in the network. Then, we
discuss the form of K-forked tree networks used in numerical
experiments. For a K-forked tree network, the depth L rep-
resents the number of layers, while the width K corresponds
to the number of branches. Inspired by the depth-first search
and width-first search of the branching tree in data structure,
K-forked tree networks with different depths and widths are
designed for conducting our experiments.

1) Reconstruction of K-Forked Tree Networks With
Different Depths: First, K-forked tree networks with differ-
ent depths L = 3, 4, 5 are established as the width K = 3
is fixed. Thus, the total number of nodes is Ns = 13, 40, 121
for specific width but different depths. Fig. 7 demonstrates that
the reconstruction effect of K-forked tree networks with differ-
ent depths. For each algorithm, without loss of generality, the
reconstruction performance grows up with the increase of the
data ratio RD. Obviously, the effect of traditional algorithms
is not well, since OMP and CoSaMP reconstruct the network
as a whole involving no prior information, which is consistent
with the previous theoretical analysis. The WOMP that incor-
porates weight information performs well in AUPR but poor
in AUROC. The MCOMP, which identifies clustered elements
more accurately, is opposite to WOMP. However, the higher
AUROC and AUPR of MCM_TRA indicates that it is more
accurate and efficient than other algorithms in reconstruction.
Therefore, it preliminarily proves our algorithm successfully
improves the reconstruction performance.
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Fig. 7. Reconstruction effect of K-forked tree networks with different depths
by OMP, CoSaMP, WOMP, MCOMP, and MCM_TRA. (a) and (b) K = 3
and L = 3. (c) and (d) K = 3 and L = 4. (e) and (f) K = 3 and L = 5. The
shape points and error bars represent the mean and SD based on 100 trials,
respectively. The left three are AUROC curves, and the right three are AUPR
curves.

Fig. 8. Comparison of reconstruction performance of K-forked tree networks
with different depths L = 3, 4, 5. (a) Average of AUROC. (b) Average of
AUPR. Different colors correspond to different reconstruction algorithms. The
error bars represent the SD, based on different data ratios RD.

To further analyze the effect of depth on the reconstruc-
tion effect, from the perspective of statistics, the AUROC and
AUPR under different data ratios RD are averaged. As shown
in Fig. 8, the average of AUROC seems to be hardly intervened
by the depth. However, as the depth increases, the averages of
AUPR of previous algorithms decrease, while the MCM_TRA
still maintains at the higher level. This illustrates the depth has
little influence on our algorithms. The underlying reason is that
MCM_TRA makes full use of the degree characteristic, which

Fig. 9. Reconstruction effect of K-forked tree networks with different widths
by OMP, CoSaMP, WOMP, MCOMP, and MCM_TRA. (a) and (b) K = 2
and L = 4. (c) and (d) K = 3 and L = 4. (e) and (f) K = 4 and L = 4. The
shape points and error bars represent the mean and SD based on 100 trials,
respectively. The left three are AUROC curves, and the right three are AUPR
curves.

Fig. 10. Comparison of reconstruction performance of K-forked tree
networks with different widths K = 2, 3, 4. (a) Average of AUROC.
(b) Average of AUPR. Different colors correspond to different reconstruction
algorithms. The error bars represent the SD, based on different data ratios RD.

remains constant when the depth changes. Hence, for deeper
K-forked tree networks, our algorithm has a more significant
reconstruction effect than other algorithms.

2) Reconstruction of K-Forked Tree Networks With
Different Widths: The previous experiment shows that
MCM_TRA exhibits reconstruction advantages for K-forked
tree networks with different depths. Next, these algorithms
are tested on K-forked tree networks with widths K = 2, 3, 4
when the depth L = 4. Accordingly, the total number of nodes
is Ns = 15, 40, 85 for identical depth but different widths.
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Fig. 11. Reconstruction evaluation indicators AUROC and AUPR as a function of the weight ŵ and the data ratio RD. The weight ŵ increases from 2 to
20 and the data ratio RD changes from 0.1 to 0.9.

Fig. 9 illustrates the reconstruction performance of K-forked
tree networks with different widths. Similar to the results in the
previous section, the MCM_TRA performs much better than
other algorithms in terms of AUROC and AUPR. Moreover,
we intuitively discover the AUROC and AUPR curves emerge
a slightly reducing trend as the width increases, which may
be related to the change of network structure.

Likewise, the effect of width on the reconstruction effect is
shown in Fig. 10. With the extension of width, the reconstruc-
tion performance corresponding to each algorithm decreases,
especially the average of AUPR decreases more prominently.
This shows the width has a greater impact on the reconstruc-
tion effect. It should be emphasized that more branches of
the K-forked tree network represent a more complex struc-
ture. That is to say, the neighbors of big degree nodes are
hard to be identified as the width expands, resulting in poor
reconstruction effect. Nevertheless, the MCM_TRA still shows
the advantages over other algorithms, which is critical for the
reconstruction of more complex K-forked tree networks.

C. Parameter Sensitivity Analysis

The above experiments assume the weight ŵ = 10 is con-
stant, however, its variation may have an influence on the
reconstruction effect. Thus, it is necessary to conduct the
parameter sensitivity analysis in this section.

Three kinds of K-forked tree networks with different widths
and depths are designed: 1) 2-forked tree with 63 nodes (K = 2
and L = 6); 2) 4-forked tree with 85 nodes (K = 4 and L = 4);
and 3) 8-forked tree with 73 nodes (K = 8 and L = 3).
The reconstruction effect based on these networks reflects the
influence of weight ŵ more generally. Fig. 11 illustrates the
reconstruction evaluation indicators AUROC and AUPR as a
function of the weight ŵ and data ratio RD. In the horizontal
direction, when ŵ is fixed, both AUROC and AUPR grow up
as RD increases, which has been confirmed. In the vertical
direction, it can be perceived the colors of blocks in these

Fig. 12. Score of evaluation indicators as a function of the weight ŵ for
different K-forked tree networks. The blue and red lines represent the scores
of AUROC and AUPR, respectively. The shaded areas mark the stable state
intervals.

density maps change evidently with respect to ŵ when RD is
fixed, which reflects the influence of weight on reconstruction
performance.

To quantify the weight interval that further optimizes the
reconstruction performance. Taking the data ratio is fixed at
RD = 0.4 as an example, the score of evaluation indicators as
a function of the weight ŵ is shown in Fig. 12. There seems
to be a threshold ŵ∗ which determines the score of evaluation
indicators. When the weight is below a threshold (ŵ < ŵ∗),
the AUROC and AUPR enhance as ŵ increases. Otherwise
(ŵ > ŵ∗), the AUROC and AUPR tend to be in a stable state
(shaded area).

In this case, the threshold is a crucial factor in weight
setting, a feasible method to determine the value of ŵ∗ is
given by

ŵ∗ = max
{
ŵ∗1, ŵ∗2

}
(36)
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where ŵ∗1 and ŵ∗2 represent the thresholds that stabilize the
scores of AUROC and AUPR, respectively. Assume the scores
of AUROC and AUPR are ϕ(ŵ) and γ (ŵ) that correspond
to the weight ŵ, they are considered to be stable when the
following conditions are satisfied:{∣∣ϕ(

ŵ
)− ϕ

(
ŵ∗1

)∣∣ ≤ �ϕ
(
ŵ∗1

)
, ŵ > ŵ∗1∣∣γ (

ŵ
)− γ

(
ŵ∗2

)∣∣ ≤ �ϕ
(
ŵ∗2

)
, ŵ > ŵ∗2.

(37)

Here, the fluctuation interval in a stable state is defined as
� = 1% by analogy with the stability theory in cybernetics.

By using this method, the values of ŵ∗ for these three
networks are marked in Fig. 12. Note that the threshold
obtained under different data ratios RD could be hetero-
geneous. In summary, this method provides a reasonable
explanation for the weight setting, which is beneficial to
effectively promote the reconstruction performance.

V. CONCLUSION

This article presents the MCM_TRA to reconstruct K-
forked tree networks from a new perspective. Different from
traditional algorithms in compressive sensing, the proposed
algorithm provides an explicit reconstruction framework
and involves latent structural information of K-forked tree
networks, which is of great significance for the reconstruc-
tion of networks with similar structural characteristics. By
conducting numerical experiments and extensive experimental
analysis, several prime conclusions are summarized as follows.

1) Given that the classification errors caused by directly
adopting the clustering algorithm, the MCM takes
advantage of the potential information in evolutionary
game data to modify the clustering result, from which
the correct classification outcome can be obtained.

2) In light of the classification result by the MCM, another
valid method TRA is proposed to reconstruct the node
signals in different sets. Compared with traditional meth-
ods, the TRA promotes the reconstruction effect as it
contrapuntally incorporates the structural features.

3) The MCM_TRA can be regarded as a specific paradigm
incorporating network structure information, which
effectively improves the reconstruction performance for
K-forked tree networks with different depths and widths.
Furthermore, the reconstruction effect could be pro-
moted for a broad range of parameters.

Similar to the sequential reconstruction algorithm used in
frequency-difference electrical impedance tomography [50]
and the decentralized Bayesian reconstruction algorithm for
networked sensing systems [51]. The MCM_TRA proposed in
this article may be applied in some potential application sce-
narios, such as reconstructing the topology of information flow
in biological networks, tree-based structure in the optimization
scheme of power networks, etc. Therefore, understanding
latent structural information is a crucial step toward a more
accurate network reconstruction.

Although the MCM_TRA performs well than previous
methods for K-forked tree networks and other networks with
similar structure characteristics, it still has certain limitations.
In the future, further enhancing the generality and accuracy of

the algorithm is our target. Furthermore, we also expect this
method can stimulate the generation of more effective recon-
struction algorithms, which will provide new insights for the
field of network reconstruction.
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